MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω           .


 / = [          ] ,          .



A energia de Casimir (e sua força) pode ser calculada a partir da energia do ponto zero do modo de Fourier do campo eletromagnético entre as placas.

A força de Casimir por unidade de área  para placas ideais, perfeitamente condutoras com vácuo entre si é

 
 / = [          ] ,          .

onde

 (hbar, ℏ) é a constante reduzida de Planck (às vezes conhecida como constante de Dirac),
 é a velocidade da luz no vácuo,
 é a distância entre as duas placas.

Isso mostra que a força Casimir por unidade de área  é muito pequena visto  / = [          ] ,          .

O cálculo mostra que a força é proporcional à soma  onde os números  representam as frequências de ondas estacionárias entre as placas; cada possível onda se comporta com um oscilador harmônico quântico cuja energia do estado fundamental é igual a  contribui para a energia potencial total; a força então é igual menos o derivativo da energia potencial com respeito a distância.

A série (soma de inteiros) é divergente e precisa ser renormalizada. Uma ferramenta útil é dada pela função zeta de Riemann porque a soma pode ser formalmente escrita como  que é igual a . Embora alguns possam acreditar que esse seria um resultado correto para a soma da série  , isso é totalmente incorreto e, se existir algum método rigoroso para se chegar a este resultado, então cabe a esta pessoa o ônus da prova.






fórmula de Landau–Zener é uma expressão matemática para a probabilidade de transição entre dois níveis de energia numa situação de cruzamento evitado. Corresponde a uma solução analítica das equações de movimento que regem a dinâmica de um sistema mecânico quântico de 2-níveis de energia, com um hamiltoniano dependente do tempo variando de tal forma que a separação de energia dos dois estados (diabáticos) é uma função linear do tempo, e o acoplamento entre esses dois estados é constante. A fórmula foi publicada separadamente por Lev Landau,[1] Clarence Zener,[2] Ernst Stueckelberg,[3] and Ettore Majorana,[4] em 1932.

Fórmula de Landau-Zener

A fórmula de Landau-Zener tem tido um papel central na descrição de efeitos não-adiabáticos (envolvendo mais do que um estado electrónico) em colisões atómicas e moleculares [5] em particular, e efeitos não-adiabáticos na química e física molecular em geral.[6] Neste contexto, considera-se que o sistema se move com uma velocidade constante v e que a variação ao longo da coordenada z dos níveis de energia do sistema é uma hipérbole. A probabilidade de um sistema que começa num dos níveis de energia terminar no outro nível de energia depois de atravessar o centro da hipérbole em zc, em que o intervalo que separa os dois níveis de energia é menor, é dada pela fórmula de Landau-Zener

 / = [          ] ,          .

em que ΔV é a diferença energética dos dois níveis no ponto zcΔF é a diferença do declive das assimptotas da hipérbole e h é a constante de Planck.

A fórmula de Landau-Zener fornece resultados razoáveis quando a energia cinética do sistema é elevada, mas sobretudo é um modelo paradigmático para racionalizar efeitos não-adiabáticos.[7]


Fórmula de Stueckelberg

Numa colisão atómica ou molecular os sistema atravessa a região de interacção duas vezes.

Numa colisão atómica ou molecular, o sistema atravessa por duas vezes a região zc em que a energia dos dois níveis se aproxima. A probabilidade de um sistema que se encontra num determinado nível de energia antes da colisão e terminar num outro após a colisão, foi determinada por Stueckelberg [3]

 / = [          ] ,          .

em que pLZ é a probabilidade de transição numa passagem dada pela fórmula da Landau-Zener, Φ é a diferença de fases acumulada pela função de onda do sistema entre as duas passagens por zc, e φ é uma fase dinâmica que tende para φ=π/4 no limite de velocidades elevadas.[7]

Comments

Popular posts from this blog